Alleviatory effects of Silicon on the morphology, physiology, and antioxidative mechanisms of wheat (Triticum aestivum L.) roots under cadmium stress in acidic nutrient solutions

Author:

ur Rahman Shafeeq,Xuebin Qi,Zhao Zhijuan,Du Zhenjie,Imtiaz Muhammad,Mehmood Faisal,Hongfei Lu,Hussain Babar,Ashraf Muhammad Nadeem

Abstract

AbstractSilicon (Si), as a quasi-essential element, has a vital role in alleviating the damaging effects of various environmental stresses on plants. Cadmium (Cd) stress is severe abiotic stress, especially in acidic ecological conditions, and Si can demolish the toxicity induced by Cd as well as acidic pH on plants. Based on these hypotheses, we demonstrated 2-repeated experiments to unfold the effects of Si as silica gel on the root morphology and physiology of wheat seedling under Cd as well as acidic stresses. For this purpose, we used nine treatments with three levels of Si nanoparticles (0, 1, and 3 mmol L−1) derived from sodium silicate (Na2SiO3) against three concentrations of Cd (0, 50, and 200 µmol L−1) in the form of cadmium chloride (CdCl2) with three replications were arranged in a complete randomized design. The pH of the nutrient solution was adjusted at 5. The averages of three random replications showed that the mutual impacts of Si and Cd in acidic pH on wheat roots depend on the concentrations of Si and Cd. The collective or particular influence of low or high levels of Si (1 or 3 mM) and acidic pH (5) improved the development of wheat roots, and the collective influence was more significant than that of a single parallel treatment. The combined effects of low or high concentrations of Cd (50 or 200 µM) and acidic pH significantly reduced root growth and biomass while increased antioxidants, and reactive oxygen species (ROS) contents. The incorporation of Si (1 or 3 mmol L−1) in Cd-contaminated acidic nutrient solution promoted the wheat root growth, decreased ROS contents, and further increased the antioxidants in the wheat roots compared with Cd single treatments in acidic pH. The demolishing effects were better with a high level of Si (3 mM) than the low level of Si (1 Mm). In conclusion, we could suggest Si as an effective beneficial nutrient that could participate actively in several morphological and physiological activities of roots in wheat plants grown under Cd and acidic pH stresses.

Funder

Innovative Research Group Project of the National Natural Science Foundation of China

The Agricultural Science and Technology Innovation Program

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3