Quasi-3D slope stability analysis of waste dump based on double wedge failure

Author:

Chen Chong,Lv Huayong,Cheng Zhanbo,Gao Xu,Cui Xinnan,Yue Xingtong

Abstract

AbstractThe double wedges sliding along the weak layer of the foundation can be observed on the slope of the waste dump and the sliding body is divided into the active wedge and passive wedge by the weak foundation and the failure surfaces of the waste dump. Because the conventional limit equilibrium slice method cannot reflect the polygonal slip surface of the slope of the waste dump with weak foundation, this study proposed a double wedge calculation method for the slope of the waste dump with weak foundation. The limit equilibrium analysis is performed on double wedges by considering the direction and values of the interaction force between double wedges to obtain the safety factor of the slope of the waste dump. Meanwhile, the quasi-3D double wedges stability analysis method of the waste dump slope with weak foundation is proposed by considering the influence of the geometry and sliding direction of the slope surface on the slope stability. The safety factor of the inverted dump slope is 0.82, the volume of the sliding body is 6.43 million m3, and the main sliding direction is 20° south by east. The shear strain rate cloud diagram of the section is ‘y’ type distribution, and the sliding body is divided into two independent blocks. The safety factor of the sliding body section obtained by the double wedge method is between 0.76 and 0.92, and the closer to the boundary of the sliding body, the greater the safety factor of the section. The quasi-three-dimensional safety factor obtained by theoretical analysis is 0.817. The results show that the calculation results of quasi-3D double wedge are basically consistent with the calculation results of strength reduction method, while the proposed method is simpler. It can be used as a quick method to evaluate slope stability in engineering practice.

Funder

Henan Province Science and Technology Project

Publisher

Springer Science and Business Media LLC

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3