Author:
Stark Sophie,Wang Clinton,Savic Lynn Jeanette,Letzen Brian,Schobert Isabel,Miszczuk Milena,Murali Nikitha,Oestmann Paula,Gebauer Bernhard,Lin MingDe,Duncan James,Schlachter Todd,Chapiro Julius
Abstract
AbstractConventional transarterial chemoembolization (cTACE) is a guideline-approved image-guided therapy option for liver cancer using the radiopaque drug-carrier and micro-embolic agent Lipiodol, which has been previously established as an imaging biomarker for tumor response. To establish automated quantitative and pattern-based image analysis techniques of Lipiodol deposition on 24 h post-cTACE CT as biomarker for treatment response. The density of Lipiodol deposits in 65 liver lesions was automatically quantified using Hounsfield Unit thresholds. Lipiodol deposition within the tumor was automatically assessed for patterns including homogeneity, sparsity, rim, and peripheral deposition. Lipiodol deposition was correlated with enhancing tumor volume (ETV) on baseline and follow-up MRI. ETV on baseline MRI strongly correlated with Lipiodol deposition on 24 h CT (p < 0.0001), with 8.22% ± 14.59 more Lipiodol in viable than necrotic tumor areas. On follow-up, tumor regions with Lipiodol showed higher rates of ETV reduction than areas without Lipiodol (p = 0.0475) and increasing densities of Lipiodol enhanced this effect. Also, homogeneous (p = 0.0006), non-sparse (p < 0.0001), rim deposition within sparse tumors (p = 0.045), and peripheral deposition (p < 0.0001) of Lipiodol showed improved response. This technical innovation study showed that an automated threshold-based volumetric feature characterization of Lipiodol deposits is feasible and enables practical use of Lipiodol as imaging biomarker for therapeutic efficacy after cTACE.
Funder
National Institutes of Health
Society of Interventional Oncology Research Grant
Guerbet Research Grant
Publisher
Springer Science and Business Media LLC
Cited by
12 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献