Localized electronic vacancy level and its effect on the properties of doped manganites

Author:

Juan Dilson,Pruneda Miguel,Ferrari Valeria

Abstract

AbstractOxygen vacancies are common to most metal oxides and usually play a crucial role in determining the properties of the host material. In this work, we perform ab initio calculations to study the influence of vacancies in doped manganites $$\text {La}_{(1-\text {x})} \text {Sr}_{\text {x}} \text {MnO}_{3}$$ La ( 1 - x ) Sr x MnO 3 , varying both the vacancy concentration and the chemical composition within the ferromagnetic-metallic range ($$0.2\,<\,\text {x}\,<\,0.5$$ 0.2 < x < 0.5 ). We find that oxygen vacancies give rise to a localized electronic level and analyse the effects that the possible occupation of this defect state can have on the physical properties of the host. In particular, we observe a substantial reduction of the exchange energy that favors spin-flipped configurations (local antiferromagnetism), which correlate with the weakening of the double-exchange interaction, the deterioration of the metallicity, and the degradation of ferromagnetism in reduced samples. In agreement with previous studies, vacancies give rise to a lattice expansion when the defect level is unoccupied. However, our calculations suggest that under low Sr concentrations the defect level can be populated, which conversely results in a local reduction of the lattice parameter. Although the exact energy position of this defect level is sensitive to the details of the electronic interactions, we argue that it is not far from the Fermi energy for optimally doped manganites ($$\text {x}\,\sim \,1/3$$ x 1 / 3 ), and thus its occupation could be tuned by controlling the number of available electrons, either with chemical doping or gating. Our results could have important implications for engineering the electronic properties of thin films in oxide compounds.

Funder

Consejo Nacional de Investigaciones Científicas y Técnicas

Agencia Nacional de Promoción Científica y Tecnológica

Ministerio de Economía, Industria y Competitividad, Gobierno de España

Generalitat de Catalunya

Horizon 2020 Framework Programme

Severo Ochoa Program

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3