A stratified flow of a non-Newtonian Casson fluid comprising microorganisms on a stretching sheet with activation energy

Author:

Lone Showkat Ahmad,Anwar Sadia,Saeed Anwar,Bognár Gabriella

Abstract

AbstractA stratified flow may be seen regularly in a number of significant industrial operations. For instance, the stratified flow regime is typically used by gas-condensate pipelines. Clearly, only a limited set of working situations for which this flow arrangement is stable allow for the achievement of the stratified two-phase flow zone. In this paper, the authors are considered the laminar, steady and incompressible magnetohydrodynamic flow of a non-Newtonian Casson fluid flow past a stratified extending sheet. The features of bio-convection, Brownian motion, thermal radiation thermophoresis, heat source, and chemically reactive activation energy have been employed. The set of equations administered flow of fluid is converted into ordinary differential equation by suitable variables. A semi-analytical investigation of the present analysis is performed with homotopy analysis method. Endorsement of the current results with previous results is also investigated. The outcomes showed that the velocity distribution of the fluid flow lessens with higher Casson and magnetic factors. The temperature profiles of fluid flow shrinkage as the Prandtl number and Casson factor increase and enlarges with higher values of thermal radiation, magnetic, and Brownian motion factors. It is found that the growing thermophoretic and Brownian motion factors reduce the rate of thermal flow of the Casson fluid flow. In contrast, the increasing thermal stratification parameter increases the thermal flow rate of fluid.

Funder

University of Miskolc

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3