World Trade Center-Cardiorespiratory and Vascular Dysfunction: Assessing the Phenotype and Metabolome of a Murine Particulate Matter Exposure Model

Author:

Veerappan Arul,Oskuei Assad,Crowley George,Mikhail Mena,Ostrofsky Dean,Gironda Zakia,Vaidyanathan Sandhya,Wadghiri Youssef Zaim,Liu Mengling,Kwon Sophia,Nolan AnnaORCID

Abstract

AbstractVascular changes occur early in the development of obstructive airways disease. However, the vascular remodeling and dysfunction due to World Trade Center-Particulate Matter (WTC-PM) exposure are not well described and are therefore the focus of this investigation. C57Bl/6 female mice oropharyngeally aspirated 200 µg of WTC-PM53 or phosphate-buffered saline (PBS) (controls). 24-hours (24-hrs) and 1-Month (1-M) after exposure, echocardiography, micro-positron emission tomography(µ-PET), collagen quantification, lung metabolomics, assessment of antioxidant potential and soluble-receptor for advanced glycation end products (sRAGE) in bronchoalveolar lavage(BAL) and plasma were performed. 24-hrs post-exposure, there was a significant reduction in (1) Pulmonary artery(PA) flow-velocity and pulmonary ejection time(PET) (2) Pulmonary acceleration time(PAT) and PAT/PET, while (3) Aortic ejection time(AET) and velocity time integral(VTI) were increased, and (4) Aortic acceleration time (AAT)/AET, cardiac output and stroke volume were decreased compared to controls. 1-M post-exposure, there was also significant reduction of right ventricular diameter as right ventricle free wall thickness was increased and an increase in tricuspid E, A peaks and an elevated E/A. The pulmonary and cardiac standard uptake value and volume 1-M post-exposure was significantly elevated after PM-exposure. Similarly, α-smooth muscle actin(α-SMA) expression, aortic collagen deposition was elevated 1-M after PM exposure. In assessment of the metabolome, prominent subpathways included advanced glycation end products (AGEs), phosphatidylcholines, sphingolipids, saturated/unsaturated fatty acids, eicosanoids, and phospholipids. BAL superoxide dismutase(SOD), plasma total-antioxidant capacity activity, and sRAGE (BAL and plasma) were elevated after 24-hrs. PM exposure and associated vascular disease are a global health burden. Our study shows persistent WTC-Cardiorespiratory and Vascular Dysfunction (WTC-CaRVD), inflammatory changes and attenuation of antioxidant potential after PM exposure. Early detection of vascular disease is crucial to preventing cardiovascular deaths and future work will focus on further identification of bioactive therapeutic targets.

Funder

U.S. Department of Health & Human Services | NIH | NCI | Division of Cancer Epidemiology and Genetics, National Cancer Institute

U.S. Department of Health & Human Services | NIH | National Institute of Biomedical Imaging and Bioengineering

U.S. Department of Health & Human Services | NIH | National Heart, Lung, and Blood Institute

U.S. Department of Health & Human Services | CDC | National Institute for Occupational Safety and Health

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3