Robustness and reproducibility for AI learning in biomedical sciences: RENOIR

Author:

Barberis Alessandro,Aerts Hugo J. W. L.,Buffa Francesca M.

Abstract

AbstractArtificial intelligence (AI) techniques are increasingly applied across various domains, favoured by the growing acquisition and public availability of large, complex datasets. Despite this trend, AI publications often suffer from lack of reproducibility and poor generalisation of findings, undermining scientific value and contributing to global research waste. To address these issues and focusing on the learning aspect of the AI field, we present RENOIR (REpeated random sampliNg fOr machIne leaRning), a modular open-source platform for robust and reproducible machine learning (ML) analysis. RENOIR adopts standardised pipelines for model training and testing, introducing elements of novelty, such as the dependence of the performance of the algorithm on the sample size. Additionally, RENOIR offers automated generation of transparent and usable reports, aiming to enhance the quality and reproducibility of AI studies. To demonstrate the versatility of our tool, we applied it to benchmark datasets from health, computer science, and STEM (Science, Technology, Engineering, and Mathematics) domains. Furthermore, we showcase RENOIR’s successful application in recently published studies, where it identified classifiers for SET2D and TP53 mutation status in cancer. Finally, we present a use case where RENOIR was employed to address a significant pharmacological challenge—predicting drug efficacy. RENOIR is freely available at https://github.com/alebarberis/renoir.

Funder

Cancer Research UK

Prostate Cancer UK

European Research Council

Publisher

Springer Science and Business Media LLC

Reference32 articles.

1. Stephens, Z. D. et al. Big data: Astronomical or genomical?. PLoS Biol. 13, e1002195 (2015).

2. Marx, V. The big challenges of big data. Nature 498, 255–260 (2013).

3. Hornby, A. S., Deuter, M., Turnbull, J. & Bradbury, J. Oxford Advanced Learner’s Dictionary of Current English (Oxford University Press, 2015).

4. Begley, C. G. & Ellis, L. M. Raise standards for preclinical cancer research. Nature 483, 531–533 (2012).

5. Stupple, A., Singerman, D. & Celi, L. A. The reproducibility crisis in the age of digital medicine. Digit. Med. 2, 1–3 (2019).

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3