The influence of recent bushfires on water quality and the operation of water purification systems in regional NSW

Author:

Jackson Reed,Krishna K. C. Bal,Li Miao,Sathasivan Sathaa,Senevirathna Lalantha

Abstract

AbstractOver the past decade, escalating extreme weather events have significantly affected New South Wales (NSW), Australia, with unprecedented droughts and intense fires. Yet, the impact on water quality and purification processes remains insufficiently studied. This research focuses on the immediate changes in NSW's environmental water quality and issues in water purification unit operations following the 2019 bushfires. Water samples and maintenance records from affected catchments, intakes, purification units, and reservoirs were analysed. Compared to control samples, post-bushfire water exhibited high turbidity. Sediment and ash shock loads posed significant threats to aquatic ecosystems. Elevated turbidity, suspended sediments, pH, and alkalinity were major concerns for water purification. Raw water samples showed turbidity exceeding 195 NTU, with flocculation and sedimentation most impacted. Immediate measures included sediment traps, aeration, pre-chlorination, and inline monitoring. These findings inform strategies to mitigate bushfire impacts on water quality and optimise water purification in fire-prone regions.

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3