Genetic dissection of grain iron and zinc, and thousand kernel weight in wheat (Triticum aestivum L.) using genome-wide association study

Author:

Krishnappa Gopalareddy,Khan Hanif,Krishna Hari,Kumar Satish,Mishra Chandra Nath,Parkash Om,Devate Narayana Bhat,Nepolean Thirunavukkarasu,Rathan Nagenahalli Dharmegowda,Mamrutha Harohalli Masthigowda,Srivastava Puja,Biradar Suma,Uday Govindareddy,Kumar Monu,Singh Gyanendra,Singh Gyanendra Pratap

Abstract

AbstractGenetic biofortification is recognized as a cost-effective and sustainable strategy to reduce micronutrient malnutrition. Genomic regions governing grain iron concentration (GFeC), grain zinc concentration (GZnC), and thousand kernel weight (TKW) were investigated in a set of 280 diverse bread wheat genotypes. The genome-wide association (GWAS) panel was genotyped using 35 K Axiom Array and phenotyped in five environments. The GWAS analysis showed a total of 17 Bonferroni-corrected marker-trait associations (MTAs) in nine chromosomes representing all the three wheat subgenomes. The TKW showed the highest MTAs (7), followed by GZnC (5) and GFeC (5). Furthermore, 14 MTAs were identified with more than 10% phenotypic variation. One stable MTA i.e. AX-95025823 was identified for TKW in both E4 and E5 environments along with pooled data, which is located at 68.9 Mb on 6A chromosome. In silico analysis revealed that the SNPs were located on important putative candidate genes such as Multi antimicrobial extrusion protein, F-box domain, Late embryogenesis abundant protein, LEA-18, Leucine-rich repeat domain superfamily, and C3H4 type zinc finger protein, involved in iron translocation, iron and zinc homeostasis, and grain size modifications. The identified novel MTAs will be validated to estimate their effects in different genetic backgrounds for subsequent use in marker-assisted selection. The identified SNPs will be valuable in the rapid development of biofortified wheat varieties to ameliorate the malnutrition problems.

Funder

Bill and Melinda Gates Foundation

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

Cited by 25 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3