Maximum reduction of energy losses in multicore MgB2 wires by metastructured soft-ferromagnetic coatings

Author:

Kapolka M.,Ruiz H. S.

Abstract

AbstractWhen compared with rare-earth coated conductors, magnesium diboride superconducting cables are known to show significant advantages by cost and easy production. However, the inherent difficulty for achieving a significant reduction of their magnetization losses in multifilamentary wires, without degrading the high critical current density that is so characteristic of the monowire, is considered as one of the major drawbacks for their practical use in high power density applications. Being this one of the major markets for superconducting cables, from fundamental principles and computational optimization techniques, in this paper we demonstrate how the embedding of the superconducting filaments into soft-ferromagnetic metastructures can render to their full magnetic decoupling, and therefore, to the maximum reduction of the energy losses that can be achieved without deteriorate the critical current density of the cable. The designed multifilamentary metastructure is made of NbTi coated MgB2 superconducting filaments in a Cu-matrix, serving as a reference for validating our model with actual experimental measurements in monowires and multifilamentary wires. The novelty in our computationally aided multifilamentary wires, is that each one of the filaments is embedded within a thin metastructure made of a soft-ferromagnetic layer and a resistive layer. We have found that for soft-ferromagnetic layers with magnetic permeabilities in the range of $$\mu _{r}=$$ μ r = 20–100, nearly a full magnetic decoupling between the superconducting filaments can be achieved, leading to efficiencies higher than $$92\%$$ 92 % , and an overall reduction of the AC-losses (including eddy currents at the Cu-matrix) higher than $$50\%$$ 50 % .

Funder

Engineering and Physical Sciences Research Council

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3