Exploring the limitations of biophysical propensity scales coupled with machine learning for protein sequence analysis

Author:

Raimondi Daniele,Orlando Gabriele,Vranken Wim F.,Moreau Yves

Abstract

AbstractMachine learning (ML) is ubiquitous in bioinformatics, due to its versatility. One of the most crucial aspects to consider while training a ML model is to carefully select the optimal feature encoding for the problem at hand. Biophysical propensity scales are widely adopted in structural bioinformatics because they describe amino acids properties that are intuitively relevant for many structural and functional aspects of proteins, and are thus commonly used as input features for ML methods. In this paper we reproduce three classical structural bioinformatics prediction tasks to investigate the main assumptions about the use of propensity scales as input features for ML methods. We investigate their usefulness with different randomization experiments and we show that their effectiveness varies among the ML methods used and the tasks. We show that while linear methods are more dependent on the feature encoding, the specific biophysical meaning of the features is less relevant for non-linear methods. Moreover, we show that even among linear ML methods, the simpler one-hot encoding can surprisingly outperform the “biologically meaningful” scales. We also show that feature selection performed with non-linear ML methods may not be able to distinguish between randomized and “real” propensity scales by properly prioritizing to the latter. Finally, we show that learning problem-specific embeddings could be a simple, assumptions-free and optimal way to perform feature learning/engineering for structural bioinformatics tasks.

Funder

Fonds Wetenschappelijk Onderzoek

KU Leuven

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

Cited by 22 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3