Abstract
AbstractA flowing-water target was irradiated with a 150 MeV/nucleon beam of 78Kr at the National Superconducting Cyclotron Laboratory to produce 77Kr and 76Kr. Real-time gamma-imaging measurements revealed the mass transport of the krypton radioisotopes through the target-water processing, or “isotope harvesting”, system. The production rates were determined to be 2.7(1) × 10–4 nuclei of 76Kr and 1.18(6) × 10–2 nuclei of 77Kr formed per incident 78Kr ion. Utilizing an off-gas processing line as part of the isotope harvesting system, a total of 7.2(1) MBq of 76Kr and 19.1(6) MBq of 77Kr were collected in cold traps. Through the decay, the daughter radionuclides 76Br and 77Br were generated and removed from the traps with an average efficiency of 77 ± 12%. Due to the differences in half-lives of 76Kr and 77Kr, it was possible to isolate a pure sample of 76Br with 99.9% radionuclidic purity. The successful collection of krypton radioisotopes to generate 76Br and 77Br demonstrates the feasibility of gas-phase isotope harvesting from irradiated accelerator cooling-water. Larger-scale collections are planned for collecting by-product radionuclides from the Facility for Rare Isotope Beams.
Funder
DOE | Office of Science
DOE NNSA Stewardship Science
DOE | Small Business Innovative Research and Small Business Technology Transfer (Small Business Innovation Research (SBIR) and Small Business Technology Transfer
Publisher
Springer Science and Business Media LLC
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献