The effect of tumor shape irregularity on Gamma Knife treatment plan quality and treatment outcome: an analysis of 234 vestibular schwannomas

Author:

Sümer Esra,Tek Ece,Türe O. Artunç,Şengöz Meriç,Dinçer Alp,Özcan Alpay,Pamir M. Necmettin,Özduman Koray,Ozturk-Isik Esin

Abstract

AbstractThe primary aim of Gamma Knife (GK) radiosurgery is to deliver high-dose radiation precisely to a target while conforming to the target shape. In this study, the effects of tumor shape irregularity (TSI) on GK dose-plan quality and treatment outcomes were analyzed in 234 vestibular schwannomas. TSI was quantified using seven different metrics including volumetric index of sphericity (VioS). GK treatment plans were created on a single GK-Perfexion/ICON platform. The plan quality was measured using selectivity index (SI), gradient index (GI), Paddick’s conformity index (PCI), and efficiency index (EI). Correlation and linear regression analyses were conducted between shape irregularity features and dose plan indices. Machine learning was employed to identify the shape feature that predicted dose plan quality most effectively. The treatment outcome analysis including tumor growth control and serviceable hearing preservation at 2 years, were conducted using Cox regression analyses. All TSI features correlated significantly with the dose plan indices (P < 0.0012). With increasing tumor volume, vestibular schwannomas became more spherical (P < 0.05) and the dose plan indices varied significantly between tumor volume subgroups (P < 0.001 and P < 0.01). VioS was the most effective predictor of GK indices (P < 0.001) and we obtained 89.36% accuracy (79.17% sensitivity and 100% specificity) for predicting PCI. Our results indicated that TSI had significant effects on the plan quality however did not adversely affect treatment outcomes.

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3