Undrained shear behavior of silty sand with a constant state parameter considering initial stress anisotropy effect

Author:

Li Peipei,Zhu Chen,Pan Xiaodong,Lv Bin,Pan Kun

Abstract

AbstractField observations in sedimentation and erosion-prone areas indicate that most natural sand deposits may contain a certain amount of non-plastic fines and are often under anisotropic stress conditions. A series of triaxial compression tests were performed on clean and silty sand with fines content fc ranging from 0 to 20% at an initial mean effective stress of p0′ = 100 kPa and varying consolidation conditions to understand the impact of initial stress anisotropy on undrained shear behavior. The results indicate that the state parameter ψ is a superior predictor for characterizing the responses of sand-fines mixtures compared to the global void ratio and relative density. A comparison of the behavior of clean and silty sand with a constant ψ (= − 0.03) confirms that the sample with 10% fc exhibits the strongest dilation and greatest shear resistance, irrespective of the consolidation conditions. It is also demonstrated that the initial stress anisotropy with a comparably higher static stress ratio ηs typically diminishes the shear strength of mixtures. However, the influence of initial stress anisotropy on soil stiffness is not unilateral. The sample consolidated to a negative ηs is stiffer than that under isotropic consolidation, while the presence of a positive ηs leads to a decrease in the secant Young's modulus.

Funder

the Natural Science Foundation of China

Zhejiang Provincial Natural Science Foundation of China

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3