Study of solidification pathway of a MoSiBTiC alloy by optical thermal analysis and in-situ observation with electromagnetic levitation

Author:

Fukuyama Hiroyuki,Sawada Ryogo,Nakashima Haruki,Ohtsuka Makoto,Yoshimi Kyosuke

Abstract

Abstract MoSiBTiC alloys are promising candidates for next-generation ultrahigh-temperature materials. However, the phase diagram of these alloys has been unknown. We have developed an ultrahigh-temperature thermal analyser based on blackbody radiation that can be used to analyse the melting and solidification of the alloy 67.5Mo–5Si–10B–8.75Ti–8.75 C (mol%). Furthermore, electromagnetic levitation (EML) was used for in-situ observation of solidification and microstructural study of the alloy. On the basis of the results, the following solidification pathway is proposed: Mo solid solution (Moss) begins to crystallize out as a primary phase at 1955 °C (2228 K) from a liquid state, which is followed by a (Moss+TiC) eutectic reaction starting at 1900 °C (2173 K). Molybdenum boride (Mo2B) phase precipitates from the liquid after the eutectic reaction; however, the Mo2B phase may react with the remaining liquid to form Moss and Mo5SiB2 (T2) as solidification proceeds. In addition, T2 also precipitates as a single phase from the liquid. The remaining liquid reaches the (Moss + T2 + TiC) ternary eutectic point at 1880 °C (2153 K), and the (Moss + T2 + Mo2C) eutectic reaction finally occurs at 1720 °C (1993 K). This completes the solidification of the MoSiBTiC alloy.

Funder

Advanced Low Carbon Technology Research and Development Program (ALCA) of the Japan Science and Technology Agency

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3