Applications of Nano-biofuel cells for Reiner-Philippoff nanoparticles with higher order slip effects

Author:

Aldabesh Abdulmajeed D.,Tlili Iskander

Abstract

AbstractOwing to advanced thermal features and stable properties, scientists have presented many novel applications of nanomaterials in the energy sectors, heat control devices, cooling phenomenon and many biomedical applications. The suspension between nanomaterials with microorganisms is important in biotechnology and food sciences. With such motivations, the aim of current research is to examine the bioconvective thermal phenomenon due to Reiner–Philippoff nanofluid under the consideration of multiple slip effects. The assessment of heat transfer is further predicted with temperature dependent thermal conductivity. The radiative phenomenon and chemical reaction is also incorporated. The stretched surface with permeability of porous space is assumed to be source of flow. With defined flow constraints, the mathematical model is developed. For solution methodology, the numerical simulations are worked out via shooting technique. The physical aspects of parameters are discussed. It is claimed that suggested results claim applications in the petroleum sciences, thermal systems, heat transfer devices etc. It has been claimed that the velocity profile increases due to Bingham parameter and Philippoff constant. Lower heat and mass transfer impact is observed due to Philippoff parameter.

Publisher

Springer Science and Business Media LLC

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3