Longitudinal imaging of murine atherosclerosis with 2-deoxy-2-[18F]fluoro-D-glucose and [18F]-sodium fluoride in genetically modified Apolipoprotein E knock-out and wild type mice

Author:

Khare Harshvardhan A.,Binderup Tina,Hag Anne Mette Fisker,Kjaer Andreas

Abstract

AbstractIn a longitudinal design, four arterial segments in mice were followed by positron emission tomography/computed tomography (PET/CT) imaging. We aimed to determine how the tracers reflected the development of atherosclerosis via the uptake of 2-deoxy-2-[18F]fluoro-D-glucose ([18F]FDG) for imaging inflammation and [18F]-sodium fluoride (Na[18F]F) for imaging active microcalcification in a murine model of atherosclerosis. Apolipoprotein E knock-out (ApoE) mice and C57 BL/6NtaC (B6) mice were divided into four groups. They received either normal chow (N = 7, ApoE mice and N = 6, B6 mice) for 32 weeks or a high-fat diet (N = 6, ApoEHFD mice and N = 9, B6HFD mice) for 32 weeks. The mice were scanned with [18F]FDG and Na[18F]F using a dedicated small animal PET/CT scanner at three timepoints. The tracer uptakes in four aortic segments (abdominal aorta, aortic arch, ascending aorta, and thoracic aorta) were measured and reported as SUVmax values. The uptake of [18F]FDG (SUVmax: 5.7 ± 0.5 vs 1.9 ± 0.2, 230.3%, p =  < 0.0001) and Na[18F]F (SUVmax: 9.6 ± 1.8 vs 4.0 ± 0.3, 175%, p = 0.007) was significantly increased in the abdominal aorta of ApoEHFD mice at Week 32 compared to baseline abdominal aorta values of ApoEHFD mice. [18F]FDG uptake in the aortic arch, ascending aorta and the thoracic aorta of B6HFD mice at Week 32 showed a robust resemblance to the abdominal aorta uptake whereas the Na[18F]F uptake only resembled in the thoracic aorta of B6HFD mice at Week 32 compared to the abdominal aorta. The uptake of both [18F]FDG and Na[18F]F increased as the disease progressed over time, and the abdominal aorta provided a robust measure across mouse strain and diet. Therefore, it seems to be the preferred region for image readout. For [18F]FDG-PET, both B6 and ApoE mice provide valuable information and either mouse strain may be used in preclinical cardiovascular studies, whereas for Na[18F]F -PET, ApoE mice should be preferred.

Funder

Horizon 2020

Lundbeckfonden

Novo Nordisk Fonden

Innovationsfonden

Kræftens Bekæmpelse

Arvid Nilssons Fond

The Neye Foundation

Danish National Research Foundation

The John and Birthe Meyer Foundation

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3