Ultralow threshold surface emitting ultraviolet lasers with semiconductor nanowires

Author:

Vafadar Mohammad Fazel,Zhao Songrui

Abstract

AbstractSurface-emitting (SE) semiconductor lasers have changed our everyday life in various ways such as communication and sensing. Expanding the operation wavelength of SE semiconductor lasers to shorter ultraviolet (UV) wavelength range further broadens the applications to disinfection, medical diagnostics, phototherapy, and so on. Nonetheless, realizing SE lasers in the UV range has remained to be a challenge. Despite of the recent breakthrough in UV SE lasers with aluminum gallium nitride (AlGaN), the electrically injected AlGaN nanowire UV lasers are based on random optical cavities, whereas AlGaN UV vertical-cavity SE lasers (VCSELs) are all through optical pumping and are all with large lasing threshold power densities in the range of several hundred kW/cm2 to MW/cm2. Herein, we report ultralow threshold, SE lasing in the UV spectral range with GaN-based epitaxial nanowire photonic crystals. Lasing at 367 nm is measured, with a threshold of only around 7 kW/cm2 (~ 49 μJ/cm2), a factor of 100× reduction compared to the previously reported conventional AlGaN UV VCSELs at similar lasing wavelengths. This is also the first achievement of nanowire photonic crystal SE lasers in the UV range. Further given the excellent electrical doping that has already been established in III-nitride nanowires, this work offers a viable path for the development of the long-sought-after semiconductor UV SE lasers.

Funder

Natural Sciences and Engineering Research Council of Canada

Fonds de recherche du Québec – Nature et technologies

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3