Modulation of torque evoked by wide-pulse, high-frequency neuromuscular electrical stimulation and the potential implications for rehabilitation and training

Author:

Donnelly Chris,Stegmüller Jonathan,Blazevich Anthony J.,Crettaz von Roten Fabienne,Kayser Bengt,Neyroud Daria,Place Nicolas

Abstract

AbstractThe effectiveness of neuromuscular electrical stimulation (NMES) for rehabilitation is proportional to the evoked torque. The progressive increase in torque (extra torque) that may develop in response to low intensity wide-pulse high-frequency (WPHF) NMES holds great promise for rehabilitation as it overcomes the main limitation of NMES, namely discomfort. WPHF NMES extra torque is thought to result from reflexively recruited motor units at the spinal level. However, whether WPHF NMES evoked force can be modulated is unknown. Therefore, we examined the effect of two interventions known to change the state of spinal circuitry in opposite ways on evoked torque and motor unit recruitment by WPHF NMES. The interventions were high-frequency transcutaneous electrical nerve stimulation (TENS) and anodal transcutaneous spinal direct current stimulation (tsDCS). We show that TENS performed before a bout of WPHF NMES results in lower evoked torque (median change in torque time-integral: − 56%) indicating that WPHF NMES-evoked torque might be modulated. In contrast, the anodal tsDCS protocol used had no effect on any measured parameter. Our results demonstrate that WPHF NMES extra torque can be modulated and although the TENS intervention blunted extra torque production, the finding that central contribution to WPHF NMES-evoked torques can be modulated opens new avenues for designing interventions to enhance WPHF NMES.

Funder

Swiss Society of Sports Medicine

Institutional funds from the University of Lausanne

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3