3D-printing-assisted fabrication of hierarchically structured biomimetic surfaces with dual-wettability for water harvesting

Author:

Choi Yeongu,Baek Keuntae,So Hongyun

Abstract

AbstractFreshwater acquisition methods under various environments are required because water scarcity has intensified worldwide. Furthermore, as water is an essential resource for humans, a freshwater acquisition method that can be utilized even under harsh conditions, such as waterless and polluted water environments, is highly required. In this study, a three-dimensional (3D) printing-assisted hierarchically structured surface with dual-wettability (i.e., surface with both hydrophobic and hydrophilic region) for fog harvesting was developed by mimicking the biological features (i.e., cactus spines and elytra of Namib Desert beetles) that have effective characteristics for fog harvesting. The cactus-shaped surface exhibited self-transportation ability of water droplet, derived from the Laplace pressure gradient. Additionally, microgrooved patterns of the cactus spines were implemented using the staircase effect of 3D printing. Moreover, a partial metal deposition method using wax-based masking was introduced to realize the dual wettability of the elytra of the Namib Desert beetle. Consequently, the proposed surface exhibited the best performance (average weight of 7.85 g for 10 min) for fog harvesting, which was enhanced by the synergetic effect between the Laplace pressure gradient and surface energy gradient. These results support a novel freshwater production system that can be utilized even in harsh conditions, such as waterless and polluted water environments.

Funder

Ministry of Trade, Industry and Energy

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3