Drosophila innate immunity suppresses the survival of xenografted mammalian tumor cells

Author:

Aida Ayaka,Yuswan Kevin,Kawai Yoichi,Hasegawa Keita,Nakajima Yu-ichiro,Kuranaga Erina

Abstract

AbstractPatient-derived xenograft (PDX) is an emerging tool established in immunodeficient vertebrate models to assess individualized treatments for cancer patients. Current xenograft models are deficient in adaptive immune systems. However, the precise role of the innate immunity in the xenograft models is unknown. With conserved signaling pathways and established genetic tools, Drosophila has contributed to the understanding of the mechanism of tumor growth as well as tumor–host interactions for decades, making it a promising candidate model for studying whether or not the hosts’ innate immunity can accommodate transplanted human tumor cells. Here we show initial observations that assess the behavior and impact of several human tumor cell lines when transplanted into Drosophila. We found that some injected cell lines persisted for a longer duration and reduced hosts’ lifespan. In particular, the human lung cancer cell line A549 were observed adjacent to the fly host tissues. We examined two factors that affect the survivability of cancer cells: (1) the optimal temperature of each cell line and (2) the innate immunity of Drosophila hosts. Especially, transplanted human tumor cells survived longer in immunodeficient flies, suggesting that the host innate immune system impedes the growth of xenografted cells. Our attempts for xenografting fly models thus provide necessary steps to overcome for establishing PDX cancer models using invertebrates.

Funder

Mitsubishi Foundation

The Princess Takamatsu Cancer Research Fund

Japan Society for the Promotion of Science

Ministry of Education, Culture, Sports, Science and Technology

Japan Science and Technology Corporation

Astellas Foundation for Research on Metabolic Disorders

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3