Localization of spleen and kidney organs from CT scans based on classification of slices in rotational views

Author:

Les Tomasz,Markiewicz Tomasz,Dziekiewicz Miroslaw,Gallego Jaime,Swiderska-Chadaj Zaneta,Lorent Malgorzata

Abstract

AbstractThis article presents a novel multiple organ localization and tracking technique applied to spleen and kidney regions in computed tomography images. The proposed solution is based on a unique approach to classify regions in different spatial projections (e.g., side projection) using convolutional neural networks. Our procedure merges classification results from different projection resulting in a 3D segmentation. The proposed system is able to recognize the contour of the organ with an accuracy of 88–89% depending on the body organ. Research has shown that the use of a single method can be useful for the detection of different organs: kidney and spleen. Our solution can compete with U-Net based solutions in terms of hardware requirements, as it has significantly lower demands. Additionally, it gives better results in small data sets. Another advantage of our solution is a significantly lower training time on an equally sized data set and more capabilities to parallelize calculations. The proposed system enables visualization, localization and tracking of organs and is therefore a valuable tool in medical diagnostic problems.

Funder

Centre for Priority Research Area Artificial Intelligence and Robotics of Warsaw University of Technology

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3