Prediction of compressive strength of concrete based on improved artificial bee colony-multilayer perceptron algorithm

Author:

Li Ping,Zhang Yanru,Gu Jiming,Duan Shiwei

Abstract

AbstractThere are many factors that affect the compressive strength of concrete. The relationship between compressive strength and these factors is a complex nonlinear problem. Empirical formulas commonly used to predict the compressive strength of concrete are based on summarizing experimental data of several different mix proportions and curing periods, and their generality is poor. This article proposes an improved artificial bee colony algorithm (IABC) and a multilayer perceptron (MLP) coupled model for predicting the compressive strength of concrete. To address the shortcomings of the basic artificial bee colony algorithm, such as easily falling into local optima and slow convergence speed, this article introduces a Gaussian mutation operator into the basic artificial bee colony algorithm to optimize the initial honey source position and designs an MLP neural network model based on the improved artificial bee colony algorithm (IABC-MLP). Compared with traditional strength prediction models, the ABC-MLP model can better capture the nonlinear relationship of the compressive strength of concrete and achieve higher prediction accuracy when considering the compound effect of multiple factors. The IABC-MLP model built in this study is compared with the ABC-MLP and particle swarm optimization (PSO) coupling algorithms. The research shows that IABC can significantly improve the training and prediction accuracy of MLP. Compared with the ABC-MLP and PSO-MLP coupling models, the training accuracy of the IABC-MLP model is increased by 1.6% and 4.5%, respectively. This model is also compared with common individual learning algorithms such as MLP, decision tree (DT), support vector machine regression (SVR), and random forest algorithms (RF). Based on the comparison of prediction results, the proposed method shows excellent performance in all indicators and demonstrates the superiority of heuristic algorithms in predicting the compressive strength of concrete.

Funder

Ping Li

Jiming Gu

Publisher

Springer Science and Business Media LLC

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3