Three-dimensional deep learning to automatically generate cranial implant geometry

Author:

Wu Chieh-Tsai,Yang Yao-Hung,Chang Yau-Zen

Abstract

AbstractWe present a 3D deep learning framework that can generate a complete cranial model using a defective one. The Boolean subtraction between these two models generates the geometry of the implant required for surgical reconstruction. There is little or no need for post-processing to eliminate noise in the implant model generated by the proposed approach. The framework can be used to meet the repair needs of cranial imperfections caused by trauma, congenital defects, plastic surgery, or tumor resection. Traditional implant design methods for skull reconstruction rely on the mirror operation. However, these approaches have great limitations when the defect crosses the plane of symmetry or the patient's skull is asymmetrical. The proposed deep learning framework is based on an enhanced three-dimensional autoencoder. Each training sample for the framework is a pair consisting of a cranial model converted from CT images and a corresponding model with simulated defects on it. Our approach can learn the spatial distribution of the upper part of normal cranial bones and use flawed cranial data to predict its complete geometry. Empirical research on simulated defects and actual clinical applications shows that our framework can meet most of the requirements of cranioplasty.

Funder

Chang Gung Memorial Hospital, Taiwan

The Ministry of Science and Technology, Taiwan

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

Cited by 12 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Investigate on Skull Defect Reconstruction Technologies;2024 IEEE 11th International Conference on Computational Cybernetics and Cyber-Medical Systems (ICCC);2024-04-04

2. Poroelastic modelling of brain tissue swelling and decompressive craniectomy treatment in ischaemic stroke;Computer Methods in Biomechanics and Biomedical Engineering;2024-03-10

3. Review on structural optimization techniques for additively manufactured implantable medical devices;Frontiers in Mechanical Engineering;2024-03-01

4. Creating high-resolution 3D cranial implant geometry using deep learning techniques;Frontiers in Bioengineering and Biotechnology;2023-12-11

5. Simple and Robust Boolean Operations for Triangulated Surfaces;Mathematics;2023-06-15

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3