Deep learning based optimal energy management for photovoltaic and battery energy storage integrated home micro-grid system

Author:

Alam Md. Morshed,Rahman Md. Habibur,Ahmed Md. Faisal,Chowdhury Mostafa Zaman,Jang Yeong Min

Abstract

AbstractThe development of the advanced metering infrastructure (AMI) and the application of artificial intelligence (AI) enable electrical systems to actively engage in smart grid systems. Smart homes with energy storage systems (ESS) and renewable energy sources (RES)-known as home microgrids-have become a critical enabling technology for the smart grid. This article proposes a new model for the energy management system of a home microgrid integrated with a battery ESS (BESS). The proposed dynamic model integrates a deep learning (DL)-based predictive model, bidirectional long short-term memory (Bi-LSTM), with an optimization algorithm for optimal energy distribution and scheduling of a BESS-by determining the characteristics of distributed resources, BESS properties, and the user’s lifestyle. The aim is to minimize the per-day electricity cost charged by time-of-use (TOU) pricing while considering the day-basis peak demand penalty. The proposed system also considers the operational constraints of renewable resources, the BESS, and electrical appliances. The simulation results from realistic case studies demonstrate the validation and responsibility of the proposed system in reducing a household’s daily electricity cost.

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3