Machine learning-based prediction of in-ICU mortality in pneumonia patients

Author:

Jeon Eun-Tae,Lee Hyo Jin,Park Tae Yun,Jin Kwang Nam,Ryu Borim,Lee Hyun Woo,Kim Dong Hyun

Abstract

AbstractConventional severity-of-illness scoring systems have shown suboptimal performance for predicting in-intensive care unit (ICU) mortality in patients with severe pneumonia. This study aimed to develop and validate machine learning (ML) models for mortality prediction in patients with severe pneumonia. This retrospective study evaluated patients admitted to the ICU for severe pneumonia between January 2016 and December 2021. The predictive performance was analyzed by comparing the area under the receiver operating characteristic curve (AU-ROC) of ML models to that of conventional severity-of-illness scoring systems. Three ML models were evaluated: (1) logistic regression with L2 regularization, (2) gradient-boosted decision tree (LightGBM), and (3) multilayer perceptron (MLP). Among the 816 pneumonia patients included, 223 (27.3%) patients died. All ML models significantly outperformed the Simplified Acute Physiology Score II (AU-ROC: 0.650 [0.584–0.716] vs 0.820 [0.771–0.869] for logistic regression vs 0.827 [0.777–0.876] for LightGBM 0.838 [0.791–0.884] for MLP; P < 0.001). In the analysis for NRI, the LightGBM and MLP models showed superior reclassification compared with the logistic regression model in predicting in-ICU mortality in all length of stay in the ICU subgroups; all age subgroups; all subgroups with any APACHE II score, PaO2/FiO2 ratio < 200; all subgroups with or without history of respiratory disease; with or without history of CVA or dementia; treatment with mechanical ventilation, and use of inotropic agents. In conclusion, the ML models have excellent performance in predicting in-ICU mortality in patients with severe pneumonia. Moreover, this study highlights the potential advantages of selecting individual ML models for predicting in-ICU mortality in different subgroups.

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3