Crystal layer growth with embedded carbon-based particles from effervescent tablet-based nanofluids

Author:

Ali Naser

Abstract

AbstractCrystallization occurs as dissolved substances gradually solidify into crystal layers within a liquid, which can increase the capability of fluids to transfer heat. In this study, the growth of crystal layer in nanofluids produced from carbon-based effervescent tablets was examined. The tablets were fabricated by combining multi-walled carbon nanotubes (MWCNTs), sodium dodecyl sulfate (SDS), sodium phosphate monobasic (NaH2PO4), and sodium carbonate (Na2CO3). The effervescent tablets were formulated with MWCNTs, NaH2PO4, and Na2CO3 at a weight ratio of 1:5.1:2.26, respectively. These tablets were then immersed in distilled water (DW) and seawater (SW) to produce 0.05 vol.% to 0.15 vol.% MWCNT suspensions. Then, the dispersion stability, thermal conductivity, and crystal layer growth of the nanofluids were characterized. The results showed that the DW-based nanofluids were more stable than their SW-based counterparts. Additionally, the 0.05 vol.% DW-based suspension exhibited greater long-term stability than those of the 0.15 vol.% suspensions, whereas the SW-based nanofluid exhibited the opposite behaviour. The greatest increases in thermal conductivity were 3.29% and 3.13% for 0.15 vol.% MWCNTs in DW and SW, respectively. The crystallization process occurred in nanofluids that contained more than 0.05 vol.% MWCNTs and exhibited a greater growth rate in SW-based suspensions with high effervescent agent concentrations.

Funder

Kuwait Foundation for the Advancement of Sciences

Kuwait Institute for Scientific Research

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3