Zero-shot learning of aerosol optical properties with graph neural networks

Author:

Lamb K. D.ORCID,Gentine P.ORCID

Abstract

AbstractBlack carbon (BC), a strongly absorbing aerosol sourced from combustion, is an important short-lived climate forcer. BC’s complex morphology contributes to uncertainty in its direct climate radiative effects, as current methods to accurately calculate the optical properties of these aerosols are too computationally expensive to be used online in models or for observational retrievals. Here we demonstrate that a Graph Neural Network (GNN) trained to predict the optical properties of numerically-generated BC fractal aggregates can accurately generalize to arbitrarily shaped particles, including much larger ($$10\times$$ 10 × ) aggregates than in the training dataset. This zero-shot learning approach could be used to estimate single particle optical properties of realistically-shaped aerosol and cloud particles for inclusion in radiative transfer codes for atmospheric models and remote sensing inversions. In addition, GNN’s can be used to gain physical intuition on the relationship between small-scale interactions (here of the spheres’ positions and interactions) and large-scale properties (here of the radiative properties of aerosols).

Funder

National Science Foundation

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3