Improving the genetic potential of okra (Abelmoschus esculentus L.) germplasm to tolerate salinity stress
-
Published:2023-12-06
Issue:1
Volume:13
Page:
-
ISSN:2045-2322
-
Container-title:Scientific Reports
-
language:en
-
Short-container-title:Sci Rep
Author:
Haq Ikram ul,Azam Noman,Ashraf Muhammad,Javaid Muhammad Mansoor,Murtaza Ghulam,Ahmed Zeeshan,Riaz Muhammad Asam,Iqbal Rashid,Habib ur Rahman Muhammed,Alwahibi Mona S.,Elshikh Mohamed S.,Aslam Muhammad Usman,Arslan Muhammad
Abstract
AbstractOkra (Abelmoschus esculentus L.) is the most consumed vegetable worldwide with the potential for diverse ecological adaptation. However, increasing salinization and changing climatic conditions are posing serious threats to the growth, yield, and quality of okra. Therefore, to mitigate increasing soil salinization and ensure sustainable okra production under rapidly changing climatic conditions, evaluation of new okra germplasm to develop salt tolerant cultivars is direly needed. The present study was designed to evaluate the genetic resources of okra genotypes for salt tolerance at growth and reproductive phases. Based on mophological and physio-biochemical responses of plants under stress condition, genotypes were divided into salt tolerant and succeptible groups. The experiment was comprised of 100 okra genotypes and each genotype was grown under control conditions and 6.5 dS m−1 NaCl concentration in a pot having 10 kg capacity. The experiment was conducted in a completely randomized design and each treatment was replicated three times. The results showed vast genetic variability among the evaluated okra germplasm traits like days to emergence, pod length, pod diameter, plant height, stem girth, and other yield-related parameters. Correlation analysis showed a highly significant positive association among the number of leaves at first flower and plant height at first flower.Likewise, pod weight also revealed a highly significant positive relationship for pod weight plant-1, pod length, and K+: Na+. Principal Component Analysis (PCA) revealed that out of 16 principal components (PCs), five components showed more than one eigenvalue and the first six PCs contributed 67.2% of the variation. Bi-plot analysis illustrated that genotypes 95, 111, 133, 99, and 128, under salt stress conditions, exhibited both high yield per plant and salt-tolerant behavior in other yield-related traits. On the basis of all studied traits, a salt susceptible group and a salt-tolerant group were formed. The salt tolerant group comprised of 97, 68, 95, 114, 64, 99, 111, 133, 128, and 109 genotypes, whereas, the salt susceptible group contained 137, 139, 130, 94, and 125 genotypes. Salt-tolerant okra genotypes were suggested to be used in further breeding programs aimed to develop salt tolerance in okra. These insights will empower precision breeding, underscore the importance of genetic diversity, and bear the potential to address the challenges of salt-affected soils while promoting broader agricultural resilience, economic prosperity, and food security.
Funder
Rheinische Friedrich-Wilhelms-Universität Bonn
Publisher
Springer Science and Business Media LLC
Subject
Multidisciplinary
Reference68 articles.
1. Aboyeji, C. M. et al. Performance and quality attributes of okra (Abelmoschus esculentus (L,) Moench) fruits grown under soil applied Zn-fertilizer, green biomass and poultry manure. Sci. Rep. 11, 1–9 (2021). 2. Gemede, H. F., Ratta, N., Haki, G. D., Woldegiorgis, A. Z. & Beyene, F. Nutritional quality and health benefits of okra (Abelmoschus esculentus): A review. J Food Process Technol 6, 2 (2015). 3. Purkait, K., Das, S., Ali, K. A. & Chakraborty, P. Phytochemical investigation and hypoglycaemic effect of Abelmoschus esculentus. Res. J. Pharmacy Technol. 9, 162–164 (2016). 4. Dilruba, S., Hasanuzzaman, M., Karim, R. & Nahar, K. Yield response of okra to different sowing time and application of growth hormones. J. Hortic. Sci. Ornamental Plants 1, 10–14 (2009). 5. Mukhtar, E., Siddiqi, E. H., Bhatti, K. H., Nawaz, K. & Hussain, K. Gas exchange attributes can be valuable selection criteria for salinity tolerance in canola cultivars (Brassica napus L.). Pak. J. Bot 45, 35–40 (2013).
|
|