Oxytocin maintains lung histological and functional integrity to confer protection in heat stroke

Author:

Lin Cheng-Hsien,Tsai Cheng-Chia,Chen Tzu-Hao,Chang Ching-PingORCID,Yang Hsi-Hsing

Abstract

AbstractOxytocin (OT) has been reported to have a protective effect in lipopolysaccharide-induced experimental acute lung injury (ALI). However, its role in heat stroke-related ALI has never been investigated. Herein, we aimed to explore the therapeutic effects and potential mechanism of action of OT on heat-induced ALI. Rats were treated with OT 60 min before the start of heat stress (42 °C for 80 min). Twenty minutes after the termination of heat stress, the effects of OT on lung histopathological changes, edema, acute pleurisy and the bronchoalveolar fluid levels of inflammatory cytokines and indicators of ischemia, cellular damage, and oxidative damage were assessed. We also evaluated the influence of OT pretreatment on heat-induced hypotension, hyperthermia, ALI score, and death in a rat model of heat stroke. The results showed that OT significantly reduced heat-induced lung edema, neutrophil infiltration, hemorrhage score, myeloperoxidase activity, ischemia, and the levels of inflammatory and oxidative damage markers in bronchoalveolar lavage fluid. The survival assessment confirmed the pathophysiological and biochemical results. An OT receptor antagonist (L-368,899) was administered 10 min before the OT injection to further demonstrate the role of OT in heat-induced ALI. The results showed that OT could not protect against the aforementioned heat stroke responses in rats treated with L-368,899. Interestingly, OT treatment 80 min after the start of heat shock did not affect survival. In conclusion, our data indicate that OT pretreatment can reduce the ischemic, inflammatory and oxidative responses related to heat-induced ALI in rats.

Funder

Ministry of Science and Technology, Taiwan

Chi Mei Medical Center

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

Cited by 22 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3