Author:
Sahoo Sudhir K.,Heske Julian,Azadi Sam,Zhang Zhenzhe,Tarakina Nadezda V.,Oschatz Martin,Khaliullin Rustam Z.,Antonietti Markus,Kühne Thomas D.
Abstract
AbstractThe potassium salt of polyheptazine imide (K–PHI) is a promising photocatalyst for various chemical reactions. From powder X–ray diffraction data an idealized structural model of K–PHI has been derived. Using atomic coordinates of this model we defined an energetically optimized K–PHI structure, in which the K ions are present in the pore and between the PHI–planes. The distance between the anion framework and K+ resembles a frustrated Lewis pair-like structure, which we denote as frustrated Coulomb pair that results in an interesting adsorption environment for otherwise non-adsorbing, non-polar gas molecules. We demonstrate that even helium (He) gas molecules, which are known to have the lowest boiling point and the lowest intermolecular interactions, can be adsorbed in this polarized environment with an adsorption energy of − 4.6 kJ mol−1 per He atom. The interaction between He atoms and K–PHI is partially originating from charge transfer, as disclosed by our energy decomposition analysis based on absolutely localized molecular orbitals. Due to very small charge transfer interactions, He gas adsorption saturates at 8 at%, which however can be subject to further improvement by cation variation.
Publisher
Springer Science and Business Media LLC
Cited by
9 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献