Author:
Langley Beth,Halloran Paul R.,Power Ann,Rickaby Rosalind E. M.,Chana Prabhjoat,Diver Poppy,Thornalley David,Hacker Christian,Love John
Abstract
AbstractSize is a fundamental cellular trait that is important in determining phytoplankton physiological and ecological processes. Fossil coccospheres, the external calcite structure produced by the excretion of interlocking plates by the phytoplankton coccolithophores, can provide a rare window into cell size in the past. Coccospheres are delicate however and are therefore poorly preserved in sediment. We demonstrate a novel technique combining imaging flow cytometry and cross-polarised light (ISX+PL) to rapidly and reliably visually isolate and quantify the morphological characteristics of coccospheres from marine sediment by exploiting their unique optical and morphological properties. Imaging flow cytometry combines the morphological information provided by microscopy with high sample numbers associated with flow cytometry. High throughput imaging overcomes the constraints of labour-intensive manual microscopy and allows statistically robust analysis of morphological features and coccosphere concentration despite low coccosphere concentrations in sediments. Applying this technique to the fine-fraction of sediments, hundreds of coccospheres can be visually isolated quickly with minimal sample preparation. This approach has the potential to enable rapid processing of down-core sediment records and/or high spatial coverage from surface sediments and may prove valuable in investigating the interplay between climate change and coccolithophore physiological/ecological response.
Funder
Shell United States
Natural Environment Research Council
Horizon 2020 Framework Programme
Publisher
Springer Science and Business Media LLC
Reference71 articles.
1. Holligan, P. M. & Balch, W. M. From the Ocean to Cells: Coccolithophore Optics and Biogeochemistry BT: Particle Analysis in Oceanography. (ed. Demers, S.) 301–324 (Springer, Berlin, 1991).
2. Wallich, G. C. Results of soundings in the North Atlantic. Ann. Mag. Nat. Hist. 6, 457–458. https://doi.org/10.1080/00222936008697369 (1860).
3. Huxley, T. H. Appendix to Capt. Dayman’s Admiralty Report ‘Deep-Sea Soundings in the N. Atlantic Ocean made in H.M.S Cyclops’. (1858).
4. Young, J. R., Geisen, M. & Probert, I. A review of selected aspects of coccolithophore biology with implications for paleobiodiversity estimation. Micropaleontology https://doi.org/10.2113/gsmicropal.51.4.267 (2005).
5. Honjo, S. Coccoliths: production, transport and sedimentation. Mar. Micropaleontol. 1, 65–79. https://doi.org/10.1016/0377-8398(76)90005-0 (1976).
Cited by
4 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献