Sea-Island-Like Morphology of CuNi Bimetallic Nanoparticles Uniformly Anchored on Single Layer Graphene Oxide as a Highly Efficient and Noble-Metal-Free Catalyst for Cyanation of Aryl Halides

Author:

Mayakrishnan Gopiraman,Elayappan Vijayakumar,Kim Ick Soo,Chung Ill-Min

Abstract

AbstractAryl nitriles are versatile compounds that can be synthesized via transition-metal-mediated cyanation of aryl halides. Most of the supported-heterogeneous catalysts are noble-metals based and there are very limited numbers of efficient non-noble metal based catalysts demonstrated for the cyanation of aryl halides. Herein, bimetallic CuNi-oxide nanoparticles supported graphene oxide nanocatalyst (CuNi/GO-I and CuNi/GO-II) has been demonstrated as highly efficient system for the cyanation of aryl halides with K4[Fe(CN)6] as a cyanating agent. Metal-support interaction, defect ratio and synergistic effect with the bimetallic nanocatalyst were investigated. To our delight, the CuNi/GO-I system activity transformed a wide range of substrates such as aryl iodides, aryl bromides, aryl chlorides and heteroaryl compounds (Yields: 95–71%, TON/TOF: 50–38/2 h−1). Moreover, enhanced catalytic performance of CuNi/GO-I and CuNi/GO-II in reduction of 4-nitropehnol with NaBH4 was also confirmed (kapp = 18.2 × 10−3 s−1 with 0.1 mg of CuNi/GO-I). Possible mechanism has been proposed for the CuNi/GO-I catalyzed cyanation and reduction reactions. Reusability, heterogeneity and stability of the CuNi/GO-I are also found to be good.

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3