Real-time Burn Classification using Ultrasound Imaging

Author:

Lee SangrockORCID,Rahul ,Ye Hanglin,Chittajallu Deepak,Kruger UweORCID,Boyko Tatiana,Lukan James K.,Enquobahrie Andinet,Norfleet Jack,De Suvranu

Abstract

AbstractThis article presents a real-time approach for classification of burn depth based on B-mode ultrasound imaging. A grey-level co-occurrence matrix (GLCM) computed from the ultrasound images of the tissue is employed to construct the textural feature set and the classification is performed using nonlinear support vector machine and kernel Fisher discriminant analysis. A leave-one-out cross-validation is used for the independent assessment of the classifiers. The model is tested for pair-wise binary classification of four burn conditions in ex vivo porcine skin tissue: (i) 200 °F for 10 s, (ii) 200 °F for 30 s, (iii) 450 °F for 10 s, and (iv) 450 °F for 30 s. The average classification accuracy for pairwise separation is 99% with just over 30 samples in each burn group and the average multiclass classification accuracy is 93%. The results highlight that the ultrasound imaging-based burn classification approach in conjunction with the GLCM texture features provide an accurate assessment of altered tissue characteristics with relatively moderate sample sizes, which is often the case with experimental and clinical datasets. The proposed method is shown to have the potential to assist with the real-time clinical assessment of burn degrees, particularly for discriminating between superficial and deep second degree burns, which is challenging in clinical practice.

Funder

United States Department of Defense | United States Army | U.S. Army Research, Development and Engineering Command | Army Research Laboratory

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

Cited by 22 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3