Mesenchymal stem cell bioenergetics and apoptosis are associated with risk for bronchopulmonary dysplasia in extremely low birth weight infants

Author:

Hazra Snehashis,Li Rui,Vamesu Bianca M.,Jilling Tamas,Ballinger Scott W.,Ambalavanan Namasivayam,Kandasamy Jegen

Abstract

AbstractOxidant stress contributes significantly to the pathogenesis of bronchopulmonary dysplasia (BPD) in extremely low birth weight (ELBW) infants. Mitochondrial function regulates oxidant stress responses as well as pluripotency and regenerative ability of mesenchymal stem cells (MSCs) which are critical mediators of lung development. This study was conducted to test whether differences in endogenous MSC mitochondrial bioenergetics, proliferation and survival are associated with BPD risk in ELBW infants. Umbilical cord-derived MSCs of ELBW infants who later died or developed moderate/severe BPD had lower oxygen consumption and aconitase activity but higher extracellular acidification—indicative of mitochondrial dysfunction and increased oxidant stress—when compared to MSCs from infants who survived with no/mild BPD. Hyperoxia-exposed MSCs from infants who died or developed moderate/severe BPD also had lower PINK1 expression but higher TOM20 expression and numbers of mitochondria/cell, indicating that these cells had decreased mitophagy. Finally, these MSCs were also noted to proliferate at lower rates but undergo more apoptosis in cell cultures when compared to MSCs from infants who survived with no/mild BPD. These results indicate that mitochondrial bioenergetic dysfunction and mitophagy deficit induced by oxidant stress may lead to depletion of the endogenous MSC pool and subsequent disruption of lung development in ELBW infants at increased risk for BPD.

Funder

National Heart, Lung, and Blood Institute

American Thoracic Society

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3