QACDes: QoS-aware context-sensitive design of cyber-physical systems

Author:

Sidhanta Subhajit,Chokwitthaya Chanachok,Zhu Yimin,Mukhopadhyay Supratik

Abstract

AbstractThere is a lot of confusion and ambiguity regarding the quantification of the Quality of Service (QoS) of a system, especially for cyber-physical systems (CPS) involved in automating or controlling the operations in built environments and critical urban infrastructures, such as office buildings, factories, transportation systems, smart cities, etc. In these cases, the QoS, as experienced by human users, depends on the context in which they (i.e., humans) interact with these systems. Traditionally, the QoS of a CPS has been defined in terms of absolute metrics. Such measures are unable to take into account the variations in performance due to contextual factors arising out of different kinds of human interactions. Further, the QoS of a CPS has typically been evaluated by comparing the performance of the actual, fully realized system with the given QoS constraints only after the actual system has been completely developed. In the case of faults in the design exposed by observed deviations from the QoS constraints due to unpredicted variations in the contextual factors, the system needs to be re-designed and re-developed from scratch. Due to the above-mentioned reason, the validation approach associated with the traditional QoS makes the design of CPS systems prohibitively expensive, impractical, as well as infeasible in numerous application areas, such as civil and engineering works, since it may not be possible to modify the system once developed beyond a certain extent. To that end, we propose a context-aware definition of QoS of a CPS which facilitates the design of robust systems as elaborated below. In this paper, we define QoS as a function of contextual factors. A CPS designed according to our QoS specifications would always satisfy the QoS irrespective of any possible changes in contextual factors resulting from many different human interactions that may occur during operation of the system. We also present QACDes - a novel framework that provides a formal mechanism for validating the design of a CPS with respect to the specified QoS constraints at the design phase as well as after the realization of the actual system. QACDes can validate any given CPS, irrespective of its application domain, against a QoS guarantee: (A) as early as even before the design phase by comparing the proposed model with a baseline model, or (B) after the realization of the actual system based on logs collected from running the actual system. We consider a lighting control system that manages the light switches - switching it on/off depending on contextual factors, such as the presence of occupants and time of the day. Using the lighting control system in a building as a use case, we analyze and demonstrate the effectiveness of our QoS definition as well as the QACDes framework against the performance metric measured in an actual fully-realized CPS.

Funder

Umea University

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3