Deciphering sex-specific miRNAs as heat-recorders in zebrafish

Author:

van Gelderen Tosca A.,Montfort Jérôme,Álvarez-Dios José Antonio,Thermes Violette,Piferrer Francesc,Bobe Julien,Ribas Laia

Abstract

AbstractIn the last decade, a plethora of microRNAs (miRNAs) has been reported in a wide variety of physiological processes, including reproduction, in many aquatic organisms. However, miRNAome alterations occurred by environmental cues due to water temperature increment have not yet been elucidated. With the aim to identify epigenetic regulations mediated by miRNAs in the gonads in a climate change scenario, the animal model zebrafish (Danio rerio) were subjected to high temperatures during sex differentiation, a treatment that results in male-skewed sex ratios in the adulthood. Once the fish reached adulthood, gonads were sequenced by high-throughput technologies and a total of 23 and 1 differentially expressed miRNAs in ovaries and testes, respectively, were identified two months after the heat treatment. Most of these heat-recorder miRNAs were involved in human sex-related cancer and about 400 predicted-target genes were obtained, some with reproduction-related functions. Their synteny in the zebrafish genome was, for more than half of the predicted target genes, in the chromosomes 7, 2, 4, 3 and 11 in the ovaries, chromosome 4 being the place where the sex-associated-region (sar) is localized in wild zebrafish. Further, spatial localization in the gonads of two selected heat-recorder miRNAs (miR-122-5p and miR-146-5p) showed exclusive expression in the ovarian germ cells. The present study expands the catalog of sex-specific miRNAs and deciphers, for the first time, thermosensitive miRNAs in the zebrafish gonads that might be used as potential epimarkers to predict environmental past events.

Funder

Agencia Estatal de Investigación

Ministerio de Ciencia e Innovación

Consejo Superior de Investigaciones Científicas

Ministerio de Economía, Industria y Competitividad, Gobierno de España

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3