Timescale mediates the effects of environmental controls on water temperature in mid- to low-order streams

Author:

García Molinos JorgeORCID,Nobuo Ishiyama,Sueyoshi MasanaoORCID,Nakamura FutoshiORCID

Abstract

AbstractAdequate management and conservation of instream thermal habitats requires an understanding of the control that different landscape features exert on water temperatures. Previous studies have extensively explored the influence of spatial scale on these relationships. However, the effect of temporal scale remains poorly understood. Here, we use paired air–water mean daily and monthly summer temperatures collected over four years from 130 monitoring stations in Japanese mid- to low-order streams to investigate whether perceived effects of different environmental controls on water temperature are dependent on the timescale of the temperature data, and whether those dependencies are related to the spatial scale at which these controls operate. We found a clear pattern for the significant cooling effect, high relative importance and strong dominance exerted by the riparian forest cover on daily temperatures at the reach scale becoming dampened by concomitant increases associated to the proportion of volcanic geology on monthly temperatures at the catchment scale. These results highlight the importance of contextualizing the effects of environmental controls on water temperatures to the timescale of the analysis. Such dependencies are particularly important for the management and conservation of instream thermal habitats in a rapidly warming world.

Funder

Japan Society for the Promotion of Science

Ministry of Land, Infrastructure, Transport and Tourism

Environmental Restoration and Conservation Agency

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3