Author:
Sharma Isha,Gupta Pranshi,Kango Naveen
Abstract
AbstractThis study focuses on the efficient and cost-effective synthesis of silver nanoparticles (AgNPs) using plant extracts, which have versatile and non-toxic applications. The research objectives include synthesizing AgNPs from readily available plant extracts, optimizing their production and multi scale characterization, along with exploring their use for enzyme immobilization and mitigation of poultry feather waste. Among the plant extracts tested, the flower extract of Hibiscus rosa-sinensis (HF) showed the most potential for AgNP synthesis. The synthesis of HF-mediated AgNPs was optimized using response surface methodology (RSM) for efficient and environment friendly production. Additionally, the keratinase enzyme obtained from Bacillus sp. NCIM 5802 was covalently linked to AgNPs, forming a keratinase nanocomplex (KNC) whose biochemical properties were evaluated. The KNC demonstrated optimal activity at pH 10.0 and 60 °C and it displayed remarkable stability in the presence of various inhibitors, metal ions, surfactants, and detergents. Spectroscopic techniques such as FTIR, UV–visible, and X-ray diffraction (XRD) analysis were employed to investigate the formation of biogenic HF-AgNPs and KNC, confirming the presence of capping and stabilizing agents. The morphological characteristics of the synthesized AgNPs and KNC were determined using transmission electron microscopy (TEM) and particle size analysis. The study highlighted the antimicrobial, dye scavenging, and antioxidant properties of biogenic AgNPs and KNC, demonstrating their potential for various applications. Overall, this research showcases the effectiveness of plant extract-driven green synthesis of AgNPs and the successful development of keratinase-laden nanocomplexes, opening possibilities for their use in immobilizing industrial and commercial enzymes.
Publisher
Springer Science and Business Media LLC
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献