Author:
Narwani Tarun Jairaj,Srinivasan Narayanaswamy,Chakraborti Sohini
Abstract
AbstractComputational methods accelerate the drug repurposing pipelines that are a quicker and cost-effective alternative to discovering new molecules. However, there is a paucity of web servers to conduct fast, focussed, and customized investigations for identifying new uses of old drugs. We present the NOD web server, which has the mentioned characteristics. NOD uses a sensitive sequence-guided approach to identify close and distant homologs of a protein of interest. NOD then exploits this evolutionary information to suggest potential compounds from the DrugBank database that can be repurposed against the input protein. NOD also allows expansion of the chemical space of the potential candidates through similarity searches. We have validated the performance of NOD against available experimental and/or clinical reports. In 65.6% of the investigated cases in a control study, NOD is able to identify drugs more effectively than the searches made in DrugBank. NOD is freely-available at http://pauling.mbu.iisc.ac.in/NOD/NOD/.
Funder
Bioinformatics and Computational Biology Centre, Department of Biotechnology
FIST program, Department of Science and Technology
Mathematical Biology program, DST
UGC, India – Centre for Advanced Studies
Ministry of Human Resource Development, India
J. C. Bose National Fellowship, DST
DST-INSPIRE fellowship program
Publisher
Springer Science and Business Media LLC
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献