Author:
Yu De-Chen,Chen Xiang-Yi,Li Xin,Zhou Hai-Yu,Yu De-Quan,Yu Xiao-Lei,Hu Yi-Cun,Zhang Rui-Hao,Zhang Xiao-Bo,Zhang Kun,An Jiang-Dong
Abstract
AbstractThe spindle and kinetochore-associated protein complex (Ska) is an essential component in chromosome segregation. It comprises three proteins (Ska1, Ska2, and Ska3) with theorized roles in chromosomal instability and tumor development, and its overexpression has been widely reported in a variety of tumors. However, the prognostic significance and immune infiltration of Ska proteins in hepatocellular carcinoma (HCC) are not completely understood. The bioinformatics tools Oncomine, UALCAN, gene expression profiling interactive analysis 2 (GEPIA2), cBioPortal, GeneMANIA, Metascape, and TIMER were used to analyze differential expression, prognostic value, genetic alteration, and immune cell infiltration of the Ska protein complex in HCC patients. We found that the mRNA expression of the Ska complex was markedly upregulated in HCC. High expression of the Ska complex is closely correlated with tumor stage, patient race, tumor grade, and TP53 mutation status. In addition, high expression of the Ska complex was significantly correlated with poor disease-free survival, while the high expression levels of Ska1 and Ska3 were associated with shorter overall survival. The biological functions of the Ska complex in HCC primarily involve the amplification of signals from kinetochores, the mitotic spindle, and (via a MAD2 invasive signal) unattached kinetochores. Furthermore, the expression of the complex was positively correlated with tumor-infiltrating cells. These results may provide new insights into the development of immunotherapeutic targets and prognostic biomarkers for HCC.
Funder
Natural Science Foundation of Gansu Province
Cuiying Project of Lanzhou University Second HospitalCuiying Project of Lanzhou University Second Hospital
the Science and Technology Bureau of Lanzhou
Publisher
Springer Science and Business Media LLC
Cited by
8 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献