Novel composite materials of modified roasted date pits using ferrocyanides for the recovery of lithium ions from seawater reverse osmosis brine

Author:

Al-Absi Rana S.,Abu-Dieyeh Mohammed H.,Ben-Hamadou Radhouane,Nasser Mustafa S.,Al-Ghouti Mohammad A.

Abstract

AbstractIn this paper, novel composite materials from modified roasted date pits using ferrocyanides were developed and investigated for the recovery of lithium ions (Li+) from seawater reverse osmosis (RO) brine. Two composite materials were prepared from roasted date pits (RDP) as supporting material, namely potassium copper hexacyanoferrate-date pits composite (RDP-FC-Cu), and potassium nickel hexacyanoferrate-date pits composite (RDP-FC-Ni). The physiochemical characterization of the RO brine revealed that it contained a variety of metals and salts such as strontium, zinc, lithium, and sodium chlorides. RDP-FC-Cu and RDP-FC-Ni exhibited enhanced chemical and physical characteristics than RDP. The optimum pH, which attained the highest adsorption removal (%) for all adsorbents, was at pH 6. In addition, the highest adsorption capacities for the adsorbents were observed at the initial lithium concentration of 100 mg/L. The BET surface area analysis confirmed the increase in the total surface area of the prepared composites from 2.518 m2/g for RDP to 4.758 m2/g for RDP-FC-Cu and 5.262 m2/g for RDP-FC-Ni. A strong sharp infrared peak appeared for the RDP-FC-Cu and RDP-FC-Ni at 2078 cm−1. This peak corresponds to the C≡N bond, which indicates the presence of potassium hexacyanoferrate, K4[Fe(CN)6]. The adsorption removal of lithium at a variety of pH ranges was the highest for RDP-FC-Cu followed by RDP-FC-Ni and RDP. The continuous increase in the adsorption capacity for lithium with increasing initial lithium concentrations was also observed. This could be mainly attributed to enhance and increased lithium mass transfer onto the available adsorption active sites on the adsorbents’ surface. The differences in the adsorption in terms of percent adsorption removal were clear and significant between the three adsorbents (P value < 0.05). All adsorbents in the study showed a high lithium desorption percentage as high as 99%. Both composites achieved full recoveries of lithium from the RO brine sample despite the presence of various other competing ions.

Funder

Qatar University

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3