Author:
Takahashi Toshihito,Nozaki Kazunori,Gonda Tomoya,Mameno Tomoaki,Ikebe Kazunori
Abstract
AbstractThe purpose of this study is to develop a method for recognizing dental prostheses and restorations of teeth using a deep learning. A dataset of 1904 oral photographic images of dental arches (maxilla: 1084 images; mandible: 820 images) was used in the study. A deep-learning method to recognize the 11 types of dental prostheses and restorations was developed using TensorFlow and Keras deep learning libraries. After completion of the learning procedure, the average precision of each prosthesis, mean average precision, and mean intersection over union were used to evaluate learning performance. The average precision of each prosthesis varies from 0.59 to 0.93. The mean average precision and mean intersection over union of this system were 0.80 and 0.76, respectively. More than 80% of metallic dental prostheses were detected correctly, but only 60% of tooth-colored prostheses were detected. The results of this study suggest that dental prostheses and restorations that are metallic in color can be recognized and predicted with high accuracy using deep learning; however, those with tooth color are recognized with moderate accuracy.
Publisher
Springer Science and Business Media LLC
Cited by
38 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献