A comparative study on green synthesis and characterization of Mn doped ZnO nanocomposite for antibacterial and photocatalytic applications

Author:

Hasan Murtaza,Liu Qiang,Kanwal Ayesha,Tariq Tuba,Mustafa Ghazala,Batool Sana,Ghorbanpour Mansour

Abstract

AbstractBiological and green synthesis of nanomaterial is a superior choice over chemical and physical methods due to nanoscale attributes implanted in a green chemistry matrix, have sparked a lot of interest for their potential uses in a variety of sectors. This research investigates the growing relevance of nanocomposites manufactured using ecologically friendly, green technologies. The transition to green synthesis correlates with the worldwide drive for environmentally sound procedures, limiting the use of traditional harsh synthetic techniques. Herein, manganese was decorated on ZnO NPs via reducing agent of Withania-extract and confirmed by UV-spectrophotometry with highest peak at 1:2 ratio precursors, and having lower bandgap energy (3.3 eV). XRD showed the sharp peaks and confirms the formation of nanoparticles, having particle size in range of 11–14 nm. SEM confirmed amorphous tetragonal structure while EDX spectroscopy showed the presence of Zn and Mn in all composition. Green synthesized Mn-decorated ZnO-NPs screened against bacterial strains and exhibited excellent antimicrobial activities against gram-negative and gram-positive bacteria. To check further, applicability of synthesized Mn-decorated Zn nanocomposites, their photocatalytic activity against toxic water pollutants (methylene blue (MB) dye) were also investigated and results showed that 53.8% degradation of MB was done successfully. Furthermore, the installation of green chemistry in synthesizing nanocomposites by using plant extract matrix optimizes antibacterial characteristics, antioxidant and biodegradability, helping to build sustainable green Mn decorated ZnO nanomaterial. This work, explains how biologically friendly Mn-doped ZnO nanocomposites can help reduce the environmental impact of traditional packaging materials. Based on these findings, it was determined that nanocomposites derived from biological resources should be produced on a wide scale to eradicate environmental and water contaminants through degradation.

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3