First on-line detection of radioactive fission isotopes produced by laser-accelerated protons

Author:

Boller Pascal,Zylstra Alex,Neumayer Paul,Bernstein Lee,Brabetz Christian,Despotopulos John,Glorius Jan,Hellmund Johannes,Henry Eugene A.,Hornung Johannes,Jeet Justin,Khuyagbaatar Jadambaa,Lens Lotte,Roeder Simon,Stoehlker Thomas,Yakushev Alexander,Litvinov Yuri A.,Shaughnessy Dawn,Bagnoud Vincent,Kuehl Thomas,Schneider Dieter H. G.

Abstract

AbstractThe on-going developments in laser acceleration of protons and light ions, as well as the production of strong bursts of neutrons and multi-$$\hbox {MeV}$$ MeV photons by secondary processes now provide a basis for novel high-flux nuclear physics experiments. While the maximum energy of protons resulting from Target Normal Sheath Acceleration is presently still limited to around $$100 \, \hbox {MeV}$$ 100 MeV , the generated proton peak flux within the short laser-accelerated bunches can already today exceed the values achievable at the most advanced conventional accelerators by orders of magnitude. This paper consists of two parts covering the scientific motivation and relevance of such experiments and a first proof-of-principle demonstration. In the presented experiment pulses of $$200 \, \hbox {J}$$ 200 J at $$\approx \, 500 \, \hbox {fs}$$ 500 fs duration from the PHELIX laser produced more than $$10^{12}$$ 10 12 protons with energies above $$15 \, \hbox {MeV}$$ 15 MeV in a bunch of sub-nanosecond duration. They were used to induce fission in foil targets made of natural uranium. To make use of the nonpareil flux, these targets have to be very close to the laser acceleration source, since the particle density within the bunch is strongly affected by Coulomb explosion and the velocity differences between ions of different energy. The main challenge for nuclear detection with high-purity germanium detectors is given by the strong electromagnetic pulse caused by the laser-matter interaction close to the laser acceleration source. This was mitigated by utilizing fast transport of the fission products by a gas flow to a carbon filter, where the $$\upgamma$$ γ -rays were registered. The identified nuclides include those that have half-lives down to $$39 \, \hbox {s}$$ 39 s . These results demonstrate the capability to produce, extract, and detect short-lived reaction products under the demanding experimental condition imposed by the high-power laser interaction. The approach promotes research towards relevant nuclear astrophysical studies at conditions currently only accessible at nuclear high energy density laser facilities.

Funder

GSI Helmholtzzentrum für Schwerionenforschung GmbH

Lawrence Livermore National Laboratory

Projekt DEAL

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3