A holistic approach in herbicide resistance research and management: from resistance detection to sustainable weed control

Author:

Liu ChunORCID,Jackson Lucy V.,Hutchings Sarah-JaneORCID,Tuesca Daniel,Moreno Raul,Mcindoe Eddie,Kaundun Shiv S.ORCID

Abstract

AbstractAgricultural weeds can adapt rapidly to human activities as exemplified by the evolution of resistance to herbicides. Despite its multi-faceted nature, herbicide resistance has rarely been researched in a holistic manner. A novel approach combining timely resistance confirmation, investigation of resistance mechanisms, alternative control solutions and population modelling was adopted for the sustainable management of the Amaranthus palmeri weed in soybean production systems in Argentina. Here, we show that resistance to glyphosate in the studied population from Cordoba province was mainly due to a P106S target-site mutation in the 5-enolpyruvylshikimate 3-phosphate synthase (EPSPS) gene, with minor contributions from EPSPS gene duplication/overexpression. Alternative herbicides, such as fomesafen, effectively controlled the glyphosate-resistant plants. Model simulations revealed the tendency of a solo herbicidal input to primarily select for a single resistance mechanism and suggested that residual herbicides, alongside chemical diversity, were important for the sustainable use of these herbicides. We also discuss the value of an interdisciplinary approach for improved understanding of evolving weeds.

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3