Author:
Wilairatana Polrat,Masangkay Frederick Ramirez,Kotepui Kwuntida Uthaisar,De Jesus Milanez Giovanni,Kotepui Manas
Abstract
AbstractA better understanding of the occurrence and risk of Plasmodium vivax infection among Duffy-negative individuals is required to guide further research on these infections across Africa. To address this, we used a meta-analysis approach to investigate the prevalence of P. vivax infection among Duffy-negative individuals and assessed the risk of infection in these individuals when compared with Duffy-positive individuals. This study was registered with The International Prospective Register of Systematic Reviews website (ID: CRD42021240202) and followed Preferred Reporting Items for Systematic review and Meta-Analyses guidelines. Literature searches were conducted using medical subject headings to retrieve relevant studies in Medline, Web of Science, and Scopus, from February 22, 2021 to January 31, 2022. Selected studies were methodologically evaluated using the Joanna Briggs Institute (JBI) Critical Appraisal Tools to assess the quality of cross-sectional, case–control, and cohort studies. The pooled prevalence of P. vivax infection among Duffy-negative individuals and the odds ratio (OR) of infection among these individuals when compared with Duffy-positive individuals was estimated using a random-effects model. Results from individual studies were represented in forest plots. Heterogeneity among studies was assessed using Cochrane Q and I2 statistics. We also performed subgroup analysis of patient demographics and other relevant variables. Publication bias among studies was assessed using funnel plot asymmetry and the Egger’s test. Of 1593 retrieved articles, 27 met eligibility criteria and were included for analysis. Of these, 24 (88.9%) reported P. vivax infection among Duffy-negative individuals in Africa, including Cameroon, Ethiopia, Sudan, Botswana, Nigeria, Madagascar, Angola, Benin, Kenya, Mali, Mauritania, Democratic Republic of the Congo, and Senegal; while three reported occurrences in South America (Brazil) and Asia (Iran). Among studies, 11 reported that all P. vivax infection cases occurred in Duffy-negative individuals (100%). Also, a meta-analysis on 14 studies showed that the pooled prevalence of P. vivax infection among Duffy-negative individuals was 25% (95% confidence interval (CI) − 3%–53%, I2 = 99.96%). A meta-analysis of 11 studies demonstrated a decreased odds of P. vivax infection among Duffy-negative individuals (p = 0.009, pooled OR 0.46, 95% CI 0.26–0.82, I2 = 80.8%). We confirmed that P. vivax infected Duffy-negative individuals over a wide prevalence range from 0 to 100% depending on geographical area. Future investigations on P. vivax infection in these individuals must determine if Duffy-negativity remains a protective factor for P. vivax infection.
Publisher
Springer Science and Business Media LLC
Reference52 articles.
1. World Malaria Report 2019. https://www.who.int/publications/i/item/9789241565721.
2. Twohig, K. A. et al. Growing evidence of Plasmodium vivax across malaria-endemic Africa. PLoS Negl. Trop. Dis. 13, e0007140 (2019).
3. Oboh, M. A. et al. Rising report of Plasmodium vivax in sub-Saharan Africa: Implications for malaria elimination agenda. Sci. Afr. 10, e00596 (2020).
4. Miller, L. H., Mason, S. J., Clyde, D. F. & McGinniss, M. H. The resistance factor to Plasmodium vivax in blacks: The Duffy-blood-group genotype, FyFy. N. Engl. J. Med. 295, 302–304 (1976).
5. Howes, R. E. et al. The global distribution of the Duffy blood group. Nat. Commun. 2, 266 (2011).
Cited by
20 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献