Virtual staining for pixel-wise and quantitative analysis of single cell images

Author:

Yilmaz Abdurrahim,Aydin Tuelay,Varol Rahmetullah

Abstract

AbstractImmunocytochemical staining of microorganisms and cells has long been a popular method for examining their specific subcellular structures in greater detail. Recently, generative networks have emerged as an alternative to traditional immunostaining techniques. These networks infer fluorescence signatures from various imaging modalities and then virtually apply staining to the images in a digital environment. In numerous studies, virtual staining models have been trained on histopathology slides or intricate subcellular structures to enhance their accuracy and applicability. Despite the advancements in virtual staining technology, utilizing this method for quantitative analysis of microscopic images still poses a significant challenge. To address this issue, we propose a straightforward and automated approach for pixel-wise image-to-image translation. Our primary objective in this research is to leverage advanced virtual staining techniques to accurately measure the DNA fragmentation index in unstained sperm images. This not only offers a non-invasive approach to gauging sperm quality, but also paves the way for streamlined and efficient analyses without the constraints and potential biases introduced by traditional staining processes. This novel approach takes into account the limitations of conventional techniques and incorporates improvements to bolster the reliability of the virtual staining process. To further refine the results, we discuss various denoising techniques that can be employed to reduce the impact of background noise on the digital images. Additionally, we present a pixel-wise image matching algorithm designed to minimize the error caused by background noise and to prevent the introduction of bias into the analysis. By combining these approaches, we aim to develop a more effective and reliable method for quantitative analysis of virtually stained microscopic images, ultimately enhancing the study of microorganisms and cells at the subcellular level.

Funder

dtec.bw

Universität der Bundeswehr München

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3