A bile acid-related prognostic signature in hepatocellular carcinoma

Author:

Zhang Wang,Zhang Yue,Wan Yipeng,Liu Qi,Zhu Xuan

Abstract

AbstractDue to the high mortality of hepatocellular carcinoma (HCC), its prognostic models are urgently needed. Bile acid (BA) metabolic disturbance participates in hepatocarcinogenesis. We aim to develop a BA-related gene signature for HCC patients. Research data of HCC were obtained from The Cancer Genome Atlas (TCGA) and International Cancer Genome Consortium (ICGC) online databases. After least absolute shrinkage and selection operator (LASSO) regression analysis, we developed a BA-related prognostic signature in TCGA cohort based on differentially expressed prognostic BA-related genes. Then, the predictive performance of the signature was evaluated and verified in TCGA and ICGC cohort respectively. We obtained the risk score of each HCC patient according to the model. The differences of immune status and drug sensitivity were compared in patients that were stratified based on risk score. The protein and mRNA levels of the modeling genes were validated in the Human Protein Atlas database and our cell lines, respectively. In TCGA cohort, we selected 4 BA-related genes to construct the first BA-related prognostic signature. The risk signature exhibited good discrimination and predictive ability, which was verified in ICGC cohort. Patients were classified into high- and low-risk groups according to their median scores. The occurrence of death increased with increasing risk score. Low-risk patients owned favorable overall survival. High-risk patients possessed high immune checkpoint expression and low IC50 values for sorafenib, cisplatin and doxorubicin. Real-time quantitative PCR and immunohistochemical results validate expression of modeling genes in the signature. We constructed the first BA-related gene signature, which might help to identify HCC patients with poor prognosis and guide individualized treatment.

Funder

the “Gan-Po Talent 555” project of Jiangxi Province

National Natural Science Foundation of China

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

Cited by 17 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3