Study of Heat and Mass Transfer in MHD Flow of Micropolar Fluid over a Curved Stretching Sheet

Author:

Yasmin Asia,Ali Kashif,Ashraf Muhammad

Abstract

AbstractA comprehensive investigation of mass and heat transfer in magnetohydrodynamics (MHD) flow of an electrically conducting non-Newtonian micropolar fluid because of curved stretching sheet is presented. Flow is originated by stretching of curved sheet by means of linear velocity. Concentration and energy equations are incorporated to study repercussion of mass and heat transfer. To define basic equations of the model, curvilinear coordinates are used. The transformed BL (boundary layer) equations for the momentum, concentration, angular momentum and temperature with appropriate boundary conditions are numerically solved by SOR (successive over relaxation) algorithms combined with the quasi-linearization technique. Flow features such as temperature fields, micro rotation, velocity and concentration are appraised for manipulation of pertinent parameters. The radius of curvature enhances the temperature and concentration whereas it declines micro-rotation as well as velocities of the fluid. It is significant to notice that magnetic field interaction is caused counterproductive in increasing concentration distribution and fluid temperature while diminishing micro-rotation and velocities at all domain flow points. As schmidt number increases concentration of fluid reduces.

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3